
2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 2019 1

Semi-Autonomous Robot Teleoperation with
Obstacle Avoidance via Model Predictive Control

Matteo Rubagotti, Senior Member, IEEE, Tasbolat Taunyazov, Student Member, IEEE,
Bukeikhan Omarali, and Almas Shintemirov, Member, IEEE

Abstract—This paper proposes a model predictive control ap-
proach for semi-autonomous teleoperation of robot manipulators:
the focus is on avoiding obstacles with the whole robot frame,
while exploiting predictions of the operator’s motion. The hand
pose of the human operator provides the reference for the end
effector, and the robot motion is continuously replanned in real
time, satisfying several constraints. An experimental case study
is described regarding the design and testing of the described
framework on a UR5 manipulator: the experimental results con-
firm the suitability of the proposed method for semi-autonomous
teleoperation, both in terms of performance (tracking capability
and constraint satisfaction) and computational complexity (the
control law is calculated well within the sampling interval).

Index Terms—Optimization and optimal control, motion and
path planning, industrial robots.

I. INTRODUCTION

TELEOPERATION systems for robot manipulators [1]–
[3] have been applied to a variety of domains ranging

from space robotics [4], to robotic surgery [5], to handling
of hazardous (e.g., radioactive) materials [6]. In some cases,
teleoperation schemes need to be adapted to the environment,
to the operator, or to the specific task [7]. Thus, semi-
autonomous teleoperation strategies have been developed, in
which the operator only focuses on providing the reference
for the end-effector pose (e.g., through a joystick, a motion
capture system or a brain-machine interface), and the control
scheme generates a corresponding adaptive robot motion [7].

When using model predictive control (MPC) [8] for control-
ling a robot, its motion is optimally replanned at each sampling
time, by defining a sequence of control moves within a given
prediction horizon via numerical optimization. Also, thanks
to the availability of ad-hoc toolboxes, such as ACADO [9],
CVXGEN [10], and PANOC [11], MPC is becoming a viable

Manuscript received: January 4th, 2019; Revised March 28th, 2019; Ac-
cepted April 30th, 20189

This paper was recommended for publication by Editor Dezhen Song upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
funded under the Nazarbayev University faculty development grant project
”Development of an Intelligent Assistive Robot Manipulation System for
Improving the Quality of Life of Disabled People in Kazakhstan”. The second
and third author contributed equally.

1M. Rubagotti and A. Shintemirov are with the Dept. of Robotics
and Mechatronics, Nazarbayev University, Nur-Sultan (Astana),
Kazakhstan. Corresponding author: Almas Shintemirov, email:
ashintemirov@nu.edu.kz

2T. Taunyazov is with the Dept. of Computer Science, National University
of Singapore, Singapore.

3B. Omarali is with the School of Electronic Engineering and Computer
Science, Queen Mary University of London, London, UK.

Digital Object Identifier (DOI): see top of this page.

solution for the control of robot manipulators (see, e.g., the
recent results in [12]–[15]). When applied to teleoperation,
MPC relies on a forecast of the operator’s motion in the
prediction horizon, which constitutes the main difference with
respect to standard trajectory tracking problems, where the
reference is known from the beginning.

In recent years, MPC has been applied to semi-autonomous
robot teleoperation, generating constrained robot motions in
the presence of obstacles. In [16], [17], obstacle shapes are
not directly accounted for, but constraints are imposed on
maximum contact forces, so that the robot is allowed to move
in a clutter: this does not necessitate the use of long prediction
horizons, which are kept at relatively short values, between
10 ms and 160 ms in the shown experimental results. In
the case when contacts with obstacles have to be avoided by
planning an alternative trajectory, relatively long prediction
horizons would allow the robot to be proactive, exploiting the
prediction of the human motion. Methods based on nonlinear
MPC for obstacle avoidance with known object geometries
and locations have been recently proposed outside the field of
teleoperation in [18]–[20], including applications to walking
and grasping in [21], [22].

In this work, we propose a semi-autonomous teleoperation
framework based on MPC for tracking the end-effector posi-
tion and orientation of a robot manipulator with a relatively
long prediction horizon (in the considered case study, of
1 s), imposing limits on joint angles, speeds and acceler-
ations, avoiding singular configurations and collisions both
between links and with obstacles. A nonlinear MPC problem
is formulated to continuously replan the robot motion based
on a prediction of the human hand pose available from a
motion capture system, cast into a nonlinear program, and
solved via sequential quadratic programming (SQP). Experi-
mental results are reported for a UR5 6-DOF industrial robot-
manipulator with a CB2 controller, equipped with a Robotiq
3 finger adaptive gripper, and teleoperated by an operator
wearing a custom-made 7-DOF human arm motion tracker.

The combination of the above-mentioned characteristics in
a single MPC framework and their experimental testing is a
first contribution of this paper, which, at least to the best of the
authors’ knowledge, constitutes a novelty with respect to the
cited works. In particular, the formulation of the constraints on
obstacle avoidance derived in this letter allows their inclusion
into the MPC problem. A second contribution of the paper
is the overall experimental implementation of the proposed
method, showing that the computation time (critical for MPC)
is largely contained in the sampling interval using state-of-the-

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 2019

art hardware.
The paper is organized as follows. Section II defines the

MPC problem, after providing the building blocks needed
to define it (i.e., prediction of the human hand pose, robot
kinematics and dynamics, obstacle avoidance constraints).
The case study is described in Section III, and the relative
experimental results are presented and discussed in Section
IV. Conclusions are drawn in Section V.

Notation: Given a vector g or matrix G, g′ and G′ are, re-
spectively, their transpose. Given a square matrix M ∈ Rn×n,
the expressions M � 0 and M � 0 impose that the matrix be
positive semi-definite and positive definite, respectively. Given
g ∈ Rn andM ∈ Rn×n, then ‖g‖2M , g′Mg. A sequence of
integer numbers from ν1 to ν2 included is denoted as N[ν1,ν2]:
for instance, N[0,3] = {0, 1, 2, 3}.

II. MPC-BASED TELEOPERATION FRAMEWORK

A. Prediction of the human hand pose

Current and predicted human hand poses are necessary
to generate references for the MPC controller. Since the
robot does not necessarily have an anthropomorphic structure,
the configuration of the whole human arm is not directly
considered as useful information: only the human hand pose
relative to the human shoulder joint is taken as reference
for the robot end effector. The human shoulder frame is
appropriately adjusted and scaled depending on the robot
dimensions and translated to the fixed robot reference frame
Ō−x̄ȳz̄. Two pieces of information need to be generated from
motion capture data: the reference position of the end effector,
referred to as p̄ ∈ R3, and its reference orientation, which is
here defined using unit quaternions, and referred to as q̄ ∈ R4.
The overall human hand pose is thus referred to as

x̄ =

[
p̄
q̄

]
∈ R7. (1)

Given the current time instant t0, in which x̄ is acquired
from the motion capture system, the forecast of the human
hand pose along the prediction horizon, i.e., for time t in the
interval

T , [t0, t0 + Tp], (2)

is referred to as
x̂T =

[
p̂T
q̂T

]
, (3)

where x̄ = x̂(t0). Predictions can be obtained depending on
the specific case study (see, e.g., [23]–[25]).

B. Robot kinematics and dynamics for MPC

1) Forward kinematics: While the robot motion is de-
scribed in the joint space, tracking the reference x̄ defined
in (1) requires using the task space. Furthermore, in order
to avoid obstacles with the whole robot frame, the most
convenient way is to impose that a number of test points in
the robot frame are kept sufficiently far from the obstacles.
Therefore, forward kinematics is needed in order to express
the robot end effector pose xe and the test point positions
in the task space, starting from the vector of joint variables

θ ∈ Rnθ . Specifically, we obtain the end-effector orientation
by using unit quaternions. Vector xe(θ) can be split into
position components pe(θ) ∈ R3 and orientation component
(via unit quaternions) qe(θ) ∈ R4, as

xe =

[
pe
qe

]
∈ R7. (4)

Regarding the test points, only their positions are important for
obstacle avoidance purposes. These positions are determined
by using a part of the calculations necessary to obtain pe,
depending on their position along the robot frame. The choice
of their locations is tightly linked to the obstacle avoidance
problem, and will be therefore described in Section II-C.

2) Singularity-free motion: The avoidance of singular con-
figurations can be obtained by imposing, in general, that

ω(θ) =
√

det(J(θ)J ′(θ)) ≥ ω̃ > 0, (5)

where ω(θ) is the volume of the manipulability ellipsoid, J(θ)
is the geometric Jacobian of the robot, and ω̃ is the imposed
minimum manipulability measure [26]. Not going through
singular configurations is important to reduce the occurrence
of sudden peaks of joint accelerations and/or velocities.

3) Dynamic models: The proposed scheme uses a state-
space model to generate predictions of the robot motion. In
general, the model is defined in the joint space, as

ż = f(z,u) (6)

where z ∈ Rnz and u ∈ Rnu are the state and input vectors,
respectively. Different choices are possible for defining (6),
but in practice it is often convenient to provide joint position
and/or velocity references to the internal control loops of the
manipulator. By using all the joint positions and velocities as
states, one can write (6) as

ż = Az +Bu (7)

where the state vector is z =
[
θ′ θ̇

′
]′
∈ Rnz , with

nz = 2nθ, while the control vector u ∈ Rnu , with nu = nθ,
represents the joint accelerations. This implies that

A =

[
0 I
0 0

]
∈ Rnz×nz , B =

[
0
I

]
∈ Rnz×nu ,

where 0 ∈ Rnu×nu and I ∈ Rnu×nu are zero and identity
matrices, respectively.

C. Obstacle avoidance constraints

In the following, we consider two types of obstacle shapes.
The first type describes half-space constraints, typically used
when floors, ceilings, or walls (referred to as Type-1 obstacles)
are in the robot workspace. For an arbitrary number nh of
Type-1 obstacles, the portion of cartesian space not occupied
by the obstacle is a polyhedron, and can be expressed as

P = {p : Ahp ≤ bh} , (8)

where p is the generic spatial coordinate in the robot O−xyz
reference frame, while Ah ∈ Rnh×3 and bh ∈ Rnw define
the linear constraints. In order to ensure that the whole robot

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

RUBAGOTTI et al.: SEMI-AUTONOMOUS ROBOT TELEOPERATION WITH OBSTACLE AVOIDANCE VIA MODEL PREDICTIVE CONTROL 3

frame does not exit P , spheres Si of radius ri are generated
having each corresponding test point pi as center. The values
of ri must be chosen such that, given any pair of spheres Si
and Si+1, their convex hull includes the whole link Li. For
each test point, the constraints in (8) are modified, by moving
each hyperplane (defined by a specific row of Ah and the
corresponding value of bh) perpendicularly to itself of ri, so
as to reduce the volume of P . The obtained polytope for each
test point is denoted as

Pi = {p : Ah,ip ≤ bh,i} (9)

where Ah,i and bh,i represent the new “tightened” values of
the hyperplane positions. Due to the convexity of Pi, one can
easily obtaine that, if pi ∈ Pi for i ∈ N[1,n1], then the robot
frame does not collide with any of the Type-1 obstacles.

The second type of shape is used for obstacles that enclose
a limited portion of the robot workspace, around which the
robot should be allowed to move (Type-2 obstacles). A number
of additional test points p̃i, i ∈ N[1,n2] (in general different
from points pi) are considered on the robot frame. Each point
p̃i is the center of a sphere S̃i, which has radius r̃i, and the
spheres are defined such that their union encloses the whole
robot frame. Different choices can be made to model Type-
2 obstacles: the method proposed in this paper consists of
using ellipsoidal sets, which provides a generalization of the
standard use of spherical obstacles, already used within an
MPC setting in [19]. In order for the robot not to collide with
the j-th obstacle, each test point p̃i is imposed to belong to
the complement of an open ellipsoidal sets, defined as

Ēi,j =
{
p : (p− pci,j)′M i,j(p− pci,j) ≥ 1

}
, (10)

where pci,j is the center of the ellipsoid, matrix M i,j ∈ R3×3,
with M i,j = M ′

i,j � 0, defines its shape, and j ∈ N[1,ne]

is the index of the specific Type-2 obstacle, with ne rep-
resenting their total number. A possible method to define
sets Ēi,j is proposed in the following. First, a set of vertices
{vj,1, vj,2, . . . , vj,nvj} is defined in the task space of the
robot, so that the space Oj occupied by the j-th obstacle
satisfies Oj ⊆ co(vj,1, vj,2, . . . , vj,nvj), nvj being the number
of vertices used to define the boundaries of the j-th obstacle,
and co(vj,1, vj,2, . . . , vj,nvj) being its convex hull. Associated
to each test point p̃i, regular polyhedra Ci,j1 , Ci,j2 . . . , Ci,jnvj are
constructed, each of them centered on the corresponding vertex
of the j-th obstacle, and whose inscribed sphere has radius
equal to r̃i. The set of all vertices of all regular polyhedra
associated to the vertices of the j-th obstacle and the i-th test
point is referred to as Vi,j . For each pair (i, j), the values of
M i,j and pci,j , needed to define Ēi,j in (10), can be obtained
as those defining the open ellipsoid

Ei,j =
{
p : (p− pci,j)′M i,j(p− pci,j) < 1

}
= R3 \ Ēi,j ,

(11)
as the minimum-volume ellipsoid containing all points in Vi,j ,
which can be done by solving a convex optimization problem,
as detailed, e.g., in [27]. We report the following derivation,
which, to the best of the authors’ knowledge, is not reported
in any previous works.

Proposition 1: If the robot configuration is such that p̃i ∈
Ēi,j for all i ∈ N[1,nθ] and all j ∈ N[1,ne], then this is a
collision-free configuration for Type-2 obstacles, i.e.,

nθ⋃
k=1

Lk ∩
ne⋃
j=1

Oj = ∅. (12)

Proof: Condition (12) is implied by S̃i ∩Oj = ∅, for all
i ∈ N[1,nθ] and all j ∈ N[1,ne]. A new set is generated as

O′i,j = int
(

co(C̃i,j1 , C̃i,j2 , . . . , C̃i,jnvj)
)
, (13)

where C̃i,jk , k ∈ N[1,nvj], are open spheres of radius r̃i, each
of them centered at the corresponding vertex vj,k of the j-th
Type-2 obstacle, while the symbol int(·) denotes the interior
of a set (i.e., O′i,j is an open set). Given the fact that, by
construction, C̃i,jk ⊂ Ci,jk , and, by definition of Ei,j , one has
that O′i,j ⊂ Ei,j . By construction of O′i,j , every point of its
boundary has minimum Euclidean distance equal to r̃j from
the boundary of Oj . As a consequence, if pi /∈ O′i,j , then
S̃i ∩Oj = ∅. But the initial assumption p̃i ∈ Ēi,j implies that
pi /∈ O′i,j , and the proposition is therefore proven.
For the sake of compactness, the following set is defined:

Ēi ,
ne⋂
j=1

Ēi,j . (14)

By definition, condition p̃i ∈ Ēi implies that the sphere S̃i
does not intersects with any Type-2 obstacles.

Remark 1: For both Type-1 and Type-2 obstacles, the
shown results ensure that the robot frame will at most enter
into contact with the obstacle boundary, but will never enter the
obstacle’s interior. In any practical application this would not
be acceptable: the sets representing the obstacles are artificially
enlarged by adding an external “safety zone”, so as to ensure
that the robot never moves beyond a given tolerance from the
physical obstacles. This can be done by applying the described
procedure using larger spheres around the test points, or
considering already enlarged sets Oj , being careful not to be
too conservative, as this would imply unnecessary deviations
of the robot trajectory from its reference. The presence of
the safety zone makes the proposed approach unsuitable for
cluttered environments, for which methods such as [16], [17]
provide better solutions. �

Remark 2: From a practical standpoint, it is important to
notice that a part of the robot frame could never possibly
enter into collision with a given obstacle. In such cases, the
corresponding set of constraints can be safely removed from
the MPC problem, in order to reduce its complexity. �

Remark 3: The test points used for Type-1 and Type-2
obstacles are in general different. Indeed, at most two test
points for each link are sufficient to avoid Type-1 obstacles,
thanks to the convexity of the corresponding free space.
Instead, a different set of test points is typically needed to
avoid Type-2 obstacles, as the union of the corresponding
spheres needs to cover the whole manipulator frame. �

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 2019

p1 ⌘ p̃1p3 ⌘ p̃3

p̃2

p2

S̃3

S̃2 S̃1

S1

S2

S3

Fig. 1. Graphical representation of test points for both Type-1 and Type-2
obstacles, and corresponding spheres, for the UR5 case study.

D. Formulation of the MPC problem

Once the current state z0 , z(t0) is acquired, the MPC
controller will determine an optimal control signal u∗(t) in the
time interval T defined in (2), referred to in short as u∗T . The
cost function to be minimized always accounts for the trade-
off between tracking performance and moderation of control
energy along the predicted robot motion. To define it, it is
convenient to introduce an output vector, as

y(z(t)) ,

[
x(θ(t))− x̂(t)

θ̇(t)

]
∈ R7+nq (15)

where x(θ(t)) − x̂(t) represents the tracking error on the
end effector pose, while θ̇(t) contains the joint speeds, to
be kept low when possible, to avoid wear of the mechanical
components, reduce energy consumption, and obtain a smooth
motion. The symbols uT and zT denote general realizations of
u(t) and z(t), respectively, in T . The most common choice
for MPC is a quadratic function, which for the considered
problem can be defined as

J(uT , zT) ,
∫ t0+Tp

t0

‖y(z(t))‖2Q + ‖u(t)‖2Rdt (16)

where Q = Q′ ∈ R(7+nq)×(7+nq) and R = R′ ∈ Rnθ×nθ are
chosen such that Q � 0, and R � 0.

Remark 4: The presence of the tracking error x(θ(t)) −
x̂(t) in the output vector, together with the structure of the
cost function (16), would lead to minimizing the mean square
prediction error on the end effector pose, in case the other
terms of the cost function and the constraints were not present.
This approach does not require the use of inverse kinematics,
as the MPC controller works directly on joint variables, and
minimizes a cost function depending on both the present and
the predicted nonlinear output y(z), whose expression directly
links joint and task spaces. �

The value of u∗T , together with the corresponding optimal
state evolution z∗T , is obtained as solution to the following
finite-horizon optimal control problem, referred to as MPC

problem in the remainder of the paper:

(u∗T , z
∗
T) = arg min

uT ,zT
J(uT , zT) (17a)

subj. to z(t0) = z0 (17b)
ż(t) = f(z(t),u(t)) t ∈ T (17c)
ω(z(t)) ≥ ω̃, t ∈ T , (17d)
u(t) ∈ U , t ∈ T (17e)
z(t) ∈ Z, t ∈ T (17f)
pi(z(t)) ∈ Pi, t ∈ T , i ∈ N[0,n1] (17g)
p̃i(z(t)) ∈ Ēi, t ∈ T , i ∈ N[1,n2]. (17h)

Condition (17b) sets the initial state value, while (17c) imposes
that the predicted system dynamics along the prediction hori-
zon evolves, depending on the input signal u(t), according
to the model defined in (6). The inequality constraint (17d)
ensures that no near-singular configurations are present in the
predicted robot motion, while (17g)-(17h) impose obstacle
avoidance for all the test points related to Type-1 and Type-
2 obstacles, respectively. Finally, the inequality constraints
(17e) and (17f) (U and Z being compact sets) are used to
impose bounds on joint accelerations, and joint speeds and
angles, respectively, so as to guarantee a smooth motion,
while avoiding self-collisions. Following a common practice
in practical MPC implementations, all inequality constraints
on the states are imposed as soft constraints, while the input
constraints are kept as hard constraints.

Remark 5: Due to the above-mentioned use of soft con-
straints, recursive feasibility (see, e.g., [8]) is guaranteed by
definition. Due to slight mismatches between nominal and
actual robot dynamics, and to the use of approximate solutions
of the MPC problem, small violations of the soft constraints
can occur in practice, for instance when nominal predictions
are very close to obstacle boundaries. Regarding stability,
some results are available on stabilizing MPC for reference
tracking of nonlinear systems (typically for piecewise-constant
references), for which the reader is referred to [28] and the
references therein. These approaches typically require the
introduction of additional assumptions and conditions that
would increase the conservativity of the proposed approach:
for this reason, no direct proof of closed-loop stability is pro-
vided, testing the performance of the MPC controller directly
on the experimental setup. The investigation of MPC-based
teleoperation with guaranteed a-priori closed-loop stability is
beyond the scope of this contribution, and will be the object
of future work. �

III. CASE STUDY

A 7-DOF human arm motion tracker system, consisting of
two IMU sensors placed on the operator’s upper arm and wrist,
and a potentiometer measuring the elbow angle, was designed
as an improvement of work [29]. By combining the readings
from these sensors, the value of x̄ is computed in the tracker
reference frame via quaternion-based forward kinematics and
translated to the base frame of the UR5 robot used in this
case study with an offset in the z-axis direction equal to half
the length of link 2. The MPC control scheme works with

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

RUBAGOTTI et al.: SEMI-AUTONOMOUS ROBOT TELEOPERATION WITH OBSTACLE AVOIDANCE VIA MODEL PREDICTIVE CONTROL 5

a sampling interval Ts = 100 ms. Since our focus is on a
general MPC framework rather than on specific teleoperation
scenarios, a very simple data extrapolation method is used for
prediction, by generating, at every sampling time, a predicted
human hand pose of ten time steps with a 100 ms spacing, with
a total prediction horizon Tp = 1 s. The value of Tp has been
chosen to provide a sufficiently long prediction of the hand
pose, thus improving the performance of the MPC controller:
a shorter Tp would decrease the ability of the control scheme
to proactively respond to possible constraint violations; on
the other hand, a longer Tp would also require to predict the
human motion for a longer time, possibly leading to unreliable
forecasts. On the other hand, the use of a larger Ts while
keeping Tp = 1 s would have increased the computational
complexity of the MPC controller without a significant im-
provement in the tracking performance: the relatively large
value for Ts is also allowed by the fact that the MPC controller
provides references to internal joint controllers, which work
with a faster sampling rate. The value of p is predicted
via linear interpolation, which assumes a straight-line motion
of the human hand in the cartesian space. The value of q
is instead assumed constant in the prediction horizon. The
use of a simple prediction model can be justified by the
consideration that, when dealing with mixed-initiative robotic
systems with human inputs such as the one considered in this
letter, complicated prediction models can result in being more
confusing or frustrating for the user, and thus often “the sim-
plest prediction methods outperform the more complex ones”
[24]. The forward kinematics of the UR5 robot is formulated
via homogeneous transformation matrices using the Denavit-
Hartenberg parameters provided by the manufacturer. Based on
these parameters, the effector position pe(θ) =

[
px py pz

]′
and quaternion orientation qe(θ) =

[
qs q1 q2 q3

]′
are

obtained as nonlinear functions of the joint variables. Being the
UR5 a non-redundant manipulator, it is known that equation
(5) reduces to ω(θ) = |det(J(θ))| ≥ ω̃, where, J(θ)
is obtained in the analytical form using standard methods,
while ω̃ = 10−9 has been chosen via trial and error during
experiments. The UR5 robot consists of 6 links, i.e., nθ = 6
and has a pre-implemented internal controller that allows fast
and precise tracking of joint velocity or position set-points
by streaming the URScript language commands via TCP/IP
communication from a control PC through a communication
driver [30]–[32]. The same connection is used to get readings
from the UR5 sensors. This allowed us to place the MPC
controller on top of the internal control loop using the mul-
tivariable double integrator model described in Section II-B3,
with nz = 2nθ = 12, and nu = nθ = 6. The manipulator
is placed on a table, on top of which a computer case is
also present: collisions must therefore be avoided with both
objects. Maintaining the whole manipulator above the table
can be expressed as a Type-1 constraint. To this end, n1 = 3
test points pi (including the end-effector position), are located
on the robot frame, as shown in Fig. 1, with respect to the
O− xyz reference frame. All spheres Si are defined with the
same radius ri = 0.15 m. The constraint is expressed in form
(8) with P =

{
p :

[
0 0 −1

]
p ≤ 0

}
. Taking into account

the given common value of ri, for all n1 = 3 test points we
obtain the same expression for Pi, in form (9), as

Pi =
{
p :

[
0 0 −1

]
p ≤ −0.15

}
, i = 1, 2, 3. (18)

The computer case is instead modeled as a Type-2 obstacle.
A different set of n2 = 3 test points p̃i is also represented
in Fig. 1. These points and the corresponding spheres S̃i are
defined to avoid the collision of links 2 to 6 with the computer
case (for the first link collision cannot happen, see Remark 2).
All spheres S̃i have the same radius r̃i = 0.20 m, and ne = 1
Type-2 obstacle is present. The whole set of Type-2 constraints
can be formulated as in (10) and (14), as

Ēi = {p : δi(p) ≥ 1} , i = 1, 2, 3, (19)

with

δi(p),

p−
 0

0.55
0

′5.35 0 0
0 3.16 0
0 0 3.16

p−
 0

0.55
0

,
which is the same for all n2 = 3 test points, due to the fact
that the three values of r̃i coincide.

For the considered application, all states are measured, and
y ∈ R13 is constructed as in (15). The cost function in
(16), tuned via trail and error, is defined using weights in
the diagonal matrix Q equal to 1 for each components of
x(θ(t)) − x̂(t), and equal to 10−3 for each component of
θ̇(t). Matrix R is also diagonal, with all elements on the main
diagonal equal to 10−3. The construction of the inequality
constraints is carried out as described in Section II-C, with
n1 = n2 = 3. In the MPC problem formulated as in (17),
constraints (17e) and (17f) are set to impose that each compo-
nent ui of u is such that |ui| ≤ 5 rad/s2, and each component
θ̇i of θ̇ satisfies |θi| ≤ 1.5 rad/s. Also, to avoid self-collisions,
it is imposed that θ4 ∈ [−π, 0] rad and θ5 ∈ [−2, 2] rad.
Constraints (17g)-(17h) are formulated with the constraint sets
introduced in (18) and (19), for Type-1 and Type-2 obstacles,
respectively. A direct multiple-shooting approach is applied
for the discretization and solution of the MPC problem (17):
Tp is divided using N = 10 equally-spaced nodes separated
by a time step of 100 ms, which coincides with Ts. The choice
of N , and consequently Tp, was dictated by the need to avoid
excessive delays due to the computational complexity of the
optimization problem: as previously mentioned, although a
sampling interval of 100 ms is large for a robotic application,
the MPC controller in practice is updating the references
for low-level controllers, which act at much higher sampling
rates. The resulting nonlinear program is solved via sequential
quadratic programming (SQP) using the ACADO Toolkit [9]:
a total of 5 SQP steps are executed at each sampling instant,
and a Gauss-Newton approximation of the Hessian of the
Lagrangian is used to obtain the QP approximation. Each QP
is solved in condensed form using the solver qpOASES [33].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

This section presents and discusses experimental results for
the considered UR5 case study. The control scheme is im-
plemented in the Unity Game Engine programming platform

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 2019

t = 3s t = 10s t = 18s t = 22s t = 25s

t = 33s t = 39s t = 46s t = 48s t = 57s

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 2. Video frames at ten different time instants during the experiment. An explanation of the single subfigures is provided in the initial part of Sec. IV.

0 20 40 60

time (s)

-6

-4

-2

0

2

4

6
Acceleration of joints 1,2,3 (rad/s2)

u1

u2

u3

0 20 40 60

time (s)

-6

-4

-2

0

2

4

6
Acceleration of joints 4,5,6 (rad/s2)

u4

u5

u6

0 20 40 60

time (s)

-1

0

1

Velocity of joints 1,2,3 (rad/s)

θ̇1

θ̇2

θ̇3

0 20 40 60

time (s)

-1

0

1

Velocity of joints 4,5,6 (rad/s)

θ̇4

θ̇5

θ̇6

0 10 20 30 40 50 60

time (s)

-4

-3

-2

-1

0

1
Angular position of joint 4 (rad)

θ4

0 10 20 30 40 50 60

time (s)

-2

-1

0

1

2

Angular position of joint 5 (rad)

θ5

0 10 20 30 40 50 60

time (s)

0

0.02

0.04

0.06

0.08

0.1
Singularity-free motion

ω(θ)

Fig. 3. Measured time evolution of, from left to right, respectively: joint accelerations ui and joint speeds θ̇i, i = 1, . . . , 6, angular position θ4, angular
position θ5, and manipulability measure ω(θ). The corresponding boundaries are represented as solid black lines.

(www.unity3d.com) and runs on a Lenovo notebook with Intel
Core i7-860 2.3 MHZ CPU, and 8 GB RAM.

As can be seen in Fig. 2, the manipulator moves towards
the bottle in Fig. 2(a), gets close to it in Fig. 2(b) and grasps
it in Fig. 2(c). It moves towards the computer case in Fig. 2(d)
and passes above it in Fig. 2(e). Then, it releases the bottle
on the table at the opposite side of the computer case in Fig.
2(f), and moves again back towards the initial position of the
bottle in Figs. 2(g) and 2(h). Finally, it moves again above the
computer case in Fig. 2(i) to grasp the bottle a second time in
Fig. 2(j). The video demonstration of this work is available at
www.alaris.kz and https://youtu.be/P9rCNJrjTjw.

Fig. 3 shows that joint accelerations and velocities are
bounded, as imposed by the MPC controller. Also, it shows
that θ4 and θ5 are kept within the imposed boundaries so as
to avoid self-collisions. Finally it displays the manipulability
measure ω(θ), which is always above the imposed threshold.

The upper plot of Fig. 4 displays the z-coordinate of each
of the three test points for Type-1 obstacles (indicated in the
figure as z(pi)), imposed by (18) to be above 0.15 m. The only
test point that gets into contact with the constraint boundary is
p3 (end effector position). The constraint is slightly violated
for 0.6 s around t = 46 s, where z(pi) reaches 0.145 m. This
is due to the uncertainty in the prediction of the human hand
pose, and to the fact that the detailed manipulator dynamics is

0 10 20 30 40 50 60

time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

Avoidance of Type-1 obstacles

z(p1)

z(p2)

z(p3)

z̄(p3)

0 10 20 30 40 50 60

time (s)

0

1

2

3

4

5

6
Avoidance of Type-2 obstacles

δ1

δ2

δ3

δ̄3

40 45 50

0.5

1

1.5

Fig. 4. Measured time evolution of, from top to bottom, respectively: z
coordinates of the test points related to the avoidance of Type-1 obstacles, and
value of δi related to the avoidance of Type-2 obstacles. The corresponding
lower bounds are represented as solid black lines.

not used in the MPC problem. Small violations of the imposed
constraints are often observed in practical applications, which
is the reason for defining “safety zones” (see Remark 1).
The plot also shows (dotted line) the corresponding evolution

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

RUBAGOTTI et al.: SEMI-AUTONOMOUS ROBOT TELEOPERATION WITH OBSTACLE AVOIDANCE VIA MODEL PREDICTIVE CONTROL 7

0 10 20 30 40 50 60

time (s)

-0.5

0

0.5

End effector position: p
x

px

p̄x

0 10 20 30 40 50 60

time (s)

-0.5

0

0.5

End effector position: p
y

py

p̄y

0 10 20 30 40 50 60

time (s)

0

0.2

0.4

0.6
End effector position: p

z

pz

p̄z

0 20 40 60

time (s)

-0.8

-0.6

-0.4

-0.2

0

End effector orientation: q
s

qs

q̄s

0 20 40 60

time (s)

0

0.2

0.4

0.6

End effector orientation: q
1

q1

q̄1

0 20 40 60

time (s)

-0.8

-0.6

-0.4

-0.2
End effector orientation: q

2

q2

q̄2

0 20 40 60

time (s)

-0.5

0

0.5

End effector orientation: q
3

q3

q̄3

Fig. 5. Measured time evolution of: components px, py and pz of the end effector position, and corresponding references p̄x, p̄y and p̄z (top row);
components qs, q1, q2 and q3 of the quaternion representing the end effector orientation, and corresponding references q̄s, q̄1, q̄2 and q̄3 (bottom row).

z̄(p3) for the end effector in case the reference were perfectly
tracked, and one can see the large constraint violation that
would occur between t = 8 s and t = 19 s.

The lower plot of Fig. 4 shows the values of δi (defined in
(19)) for the three test points for Type-2 obstacles, which have
to be greater or equal than 1. In this case, two of the test points
(including the end effector) are on the threshold during certain
time intervals. However, the value of δ2 never violates the
constraint. On the other hand δ3 is slightly below the threshold
for about 10 s in total, reaching a lower peak of 0.91. Also
in this case, due to the presence of a safety zone around the
obstacle, no actual collisions occur. Analogously to the upper
plot, the lower plot displays the evolution of δ̄3, i.e., the value
that δ3 would have if the reference were perfectly tracked: one
can see that large violations of the constraint would occur. In
the zoomed subfigure, we show the ability of MPC to exploit
predictions to avoid large constraints violations: around t =
39 s, the rate of decrease of δ3 diminishes around 1 s (= Tp)
before the constraint is hit by the reference signal: this is due to
the MPC controller slowing down the robot when a potential
collision is foreseen. On the other hand, at time t = 50 s,
δ3 starts increasing 1 s before the corresponding reference
value: this is due to the ability of the controller to exploit the
prediction of the reference signal, which is correctly predicted
as moving away from the obstacle.

Fig. 5 shows the tracking of all components of the end
effector pose xe. In certain time intervals, due to the need to
satisfy constraints, the control system allows an increase of
the tracking error (this is mainly apparent on pz), determining
the best tracking performance achievable while satisfying the
imposed constraints. The operator moves so that a perfect
tracking would imply collision with the table between t = 9 s
and t = 20 s: as a consequence, the tracking error for pz is
large in this time interval in order to satisfy the Type-1 obstacle
constraint, as can be observed looking at the same time interval
in the upper plot of Fig. 4. Notice that, specifically between
t = 15 s and t = 18 s, the position reference remains
approximately constant, and the MPC controller drives the
robot end effector position as close as possible to the reference,

while ensuring constraints satisfaction. After that, the operator
provides an end-effector position reference that would imply
collision with the computer case in a high percentage of the
time interval between t = 22 s and t = 60 s (see the lower plot
of Fig. 4). The price to pay for collision avoidance is visible
mainly for variable pz in Fig. 5, where the tracking error
is large in certain time intervals. The tracking performance
depends on the aggressiveness of the control law: a better
tracking would have been obtained by decreasing the weights
of the cost function for joint accelerations and velocities, but
this would have increased the wear of the components and
caused a jittery motion.

The human operator, in this case study, was aware of the
presence of the MPC controller, and was therefore unaffected
by the fact that the manipulator would move differently from
the reference in the presence of active constraints. This can
be noticed by the reference trajectories in Fig. 5, where it
is apparent that no sudden movements of the operator hand
happen in response to deviations of the robot from the nominal
trajectory. In certain applications this lack of transparency can
constitute a problem: a possibility to mitigate it would be
the use of augmented reality [34], which would provide the
operator with a visualization of the current reference that is
being given to the robot end-effector.

One of the main aims of this work is to show that the
presented experimental results can be obtained with standard
computers available in any industrial setting, and can thus be
applied to a wide range of real-world problems. For our case
study, the average computation time for solving the MPC prob-
lem, consisting of 5 SQP steps, is 800 µs. More importantly,
the maximum computation time, equal to 18.45 ms, is still well
below the sampling interval length of 100 ms. The maximum
value only occurs for one sampling instant, and, apart from
that case, the computation time never exceeds 3 ms, as can be
also seen in Fig. 6. The sudden increase in computation time
happens in coincidence with the spikes in the value of joint
accelerations and velocities in Fig. 3. This is probably due to
a change of the predicted hand pose reference, in the presence
of active constraints. Indeed, at t = 48 s, the constraint on

2377-3766 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2019.2917707, IEEE Robotics
and Automation Letters

8 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED APRIL 2019

θ4 is active (Fig. 3), together with that on the avoidance of
Type-2 obstacles (bottom of Fig. 4). As can be seen in the
bottom of Fig. 4, at t = 48 s the reference position of the end
effector stops moving towards the inner part of the obstacle
and starts moving towards outside. The simultaneous presence
of these conditions probably caused the previous solution of
the MPC problem not to be a good initialization for the current
problem. As a consequence, a sudden change on velocities and
accelerations occurred, and more calculations than usual were
necessary for the solver to find the optimal control sequence.

0 10 20 30 40 50 60

time (s)

0

5

10

15

20
MPC computation time

computation time (ms)
average computation time (ms)

Fig. 6. Time evolution of the computation time for the MPC control law as
a function of time.

V. CONCLUSIONS

This paper has described a general MPC framework for
semi-autonomous teleoperation of robot manipulators with
obstacle avoidance. The reported experimental results on the
teleoperation of a UR5 robot confirmed the expected per-
formance: the MPC controller allowed the manipulator to
track the human hand pose while satisfying all the imposed
constraints, and exploiting the prediction of the reference
signals to proactively prevent collisions and improve the
tracking performance. With a sampling interval of 100 ms
and a prediction horizon of 1 s, the computation time never
exceeded 19 ms, which makes the proposed method a possible
candidate for solving semi-autonomous teleoperation problems
in different scenarios. Future work will be devoted to extend
the described approach to scenarios with dynamic obstacles,
also developing MPC schemes with guaranteed stability.

REFERENCES

[1] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical
survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.

[2] H. Boessenkool et al., “A task-specific analysis of the benefit of haptic
shared control during telemanipulation,” IEEE T Haptics, vol. 6, no. 1,
pp. 2–12, 2013.

[3] G. Salvietti et al., “Multicontact bilateral telemanipulation with kine-
matic asymmetries,” IEEE/ASME T Mech, vol. 22, no. 1, pp. 445–456,
2017.

[4] A. Flores-Abad et al., “A review of space robotics technologies for on-
orbit servicing,” Prog Aerosp Sci, vol. 68, pp. 1–26, 2014.

[5] R. H. Taylor et al., “Medical robotics and computer-integrated surgery,”
in Springer handbook of robotics, 2016, pp. 1657–1684.

[6] J. Vertut, Teleoperation and robotics: applications and technology.
Springer Science & Business Media, 2013.

[7] C. Passenberg, A. Peer, and M. Buss, “A survey of environment,
operator, and task-adapted controllers for teleoperation systems,” Mecha-
tronics, vol. 20, no. 7, pp. 787–801, 2010.

[8] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[9] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit - an open-
source framework for automatic control and dynamic optimization,”
Optim Contr Appl Met, vol. 32, no. 3, pp. 298–312, 2011.

[10] J. Mattingley and S. Boyd, “Cvxgen: A code generator for embedded
convex optimization,” Optim Eng, vol. 13, no. 1, pp. 1–27, 2012.

[11] L. Stella et al., “A simple and efficient algorithm for nonlinear model
predictive control,” in Proc IEEE Conf Dec Contr, 2017, pp. 1939–1944.

[12] A. Zhakatayev, M. Rubagotti, and H. A. Varol, “Closed-loop control of
variable stiffness actuated robots via nonlinear model predictive control,”
IEEE Access, vol. 3, pp. 235–248, 2015.

[13] G. P. Incremona, A. Ferrara, and L. Magni, “MPC for robot manipulators
with integral sliding modes generation,” IEEE/ASME T Mech, vol. 22,
no. 3, pp. 1299–1307, 2017.

[14] T. Faulwasser et al., “Implementation of nonlinear model predictive
path-following control for an industrial robot,” IEEE T Contr Syst T,
vol. 25, no. 4, pp. 1505–1511, 2017.

[15] G. B. Avanzini, A. M. Zanchettin, and P. Rocco, “Constrained model
predictive control for mobile robotic manipulators,” Robotica, vol. 36,
no. 1, pp. 19–38, 2018.

[16] A. Jain et al., “Reaching in clutter with whole-arm tactile sensing,” Int
J Robot Res, vol. 32, no. 4, pp. 458–482, 2013.

[17] M. D. Killpack, A. Kapusta, and C. C. Kemp, “Model predictive control
for fast reaching in clutter,” Auton Robots, vol. 40, no. 3, pp. 537–560,
2016.

[18] A. M. Jasour and M. Farrokhi, “Adaptive neuro-predictive control
for redundant robot manipulators in presence of static and dynamic
obstacles: A Lyapunov-based approach,” Int J Adaptive Contr Signal
Proc, vol. 28, no. 3-5, pp. 386–411, 2014.

[19] A. Zube, “Cartesian nonlinear model predictive control of redundant
manipulators considering obstacles,” in Proc IEEE Int Conf Ind Tech,
2015, pp. 137–142.

[20] M. Wang, J. Luo, and U. Walter, “A non-linear model predictive
controller with obstacle avoidance for a space robot,” Adv Space Res,
vol. 57, no. 8, pp. 1737–1746, 2016.

[21] V. Kumar et al., “Real-time behaviour synthesis for dynamic hand-
manipulation,” in Proc IEEE Int Conf Robot Autom, 2014, pp. 6808–
6815.

[22] J. Koenemann et al., “Whole-body model-predictive control applied to
the HRP-2 humanoid,” in Proc IEEE/RSJ Int Conf Intell Rob Sys, 2015,
pp. 3346–3351.

[23] Z. Wang et al., “Probabilistic movement modeling for intention inference
in human-robot interaction,” Int J Robot Res, vol. 32, no. 7, pp. 841–858,
2013.

[24] R. Chipalkatty, G. Droge, and M. B. Egerstedt, “Less is more: Mixed-
initiative model-predictive control with human inputs,” IEEE T Robot,
vol. 29, no. 3, pp. 695–703, 2013.

[25] H. Liu and L. Wang, “Human motion prediction for human-robot
collaboration,” J Manuf Syst, vol. 44, pp. 287–293, 2017.

[26] B. Siciliano et al., Robotics: Modeling, Planning and Control. Springer,
2010.

[27] P. Kumar and E. A. Yildirim, “Minimum-volume enclosing ellipsoids
and core sets,” J Optimiz Theory App, vol. 126, no. 1, pp. 1–21, 2005.

[28] D. Limon et al., “Nonlinear MPC for tracking piece-wise constant
reference signals,” IEEE T Autom Contr, vol. 63, no. 11, pp. 3735–
3750, 2018.

[29] T. Taunyazov, B. Omarali, and A. Shintemirov, “A novel low-cost 4-
DOF wireless human arm motion tracker,” in Proc IEEE Int Conf Biom
Robot Biomech, 2016, pp. 157–162.

[30] T. T. Andersen, “Optimizing the Universal Robots ROS driver.” Tech-
nical University of Denmark, Tech. Rep., 2015.

[31] Y. Liu and Y. Zhang, “Towards welding robot with human knowledge:
A remotely-controlled approach,” IEEE T Autom Sci Eng, vol. 12, no. 2,
pp. 769–775, 2015.

[32] K. Mathiassen et al., “An ultrasound robotic system using the commer-
cial robot UR5,” Frontiers in Robotics and AI, vol. 3, 2016.

[33] H. J. Ferreau et al., “qpOASES: A parametric active-set algorithm for
quadratic programming,” Math Progr Comp, vol. 6, no. 4, pp. 327–363,
2014.

[34] M. Billinghurst et al., “A survey of augmented reality,” Found Trends
Human–Computer Interact, vol. 8, no. 2-3, pp. 73–272, 2015.

