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Abstract— The sense of touch is arguably the first human
sense to develop. Empowering robots with the sense of touch
may augment their understanding of interacted objects and the
environment beyond standard sensory modalities (e.g., vision).
This paper investigates the effect of hybridizing touch and
sliding movements for tactile-based texture classification. We
develop three machine-learning methods within a framework
to discriminate between surface textures; the first two methods
use hand-engineered features, whilst the third leverages convo-
lutional and recurrent neural network layers to learn feature
representations from raw data. To compare these methods, we
constructed a dataset comprising tactile data from 23 textures
gathered using the iCub platform under a loosely constrained
setup, i.e., with nonlinear motion. In line with findings from
neuroscience, our experiments show that a good initial estimate
can be obtained via touch data, which can be further refined
via sliding; combining both touch and sliding data results in
98% classification accuracy over unseen test data.

I. INTRODUCTION

Enabling robots to perceive textures through tactile inter-
action opens up an additional perceptual modality beyond
other modes such as vision and audio. Textures often reveal
the physical nature of an object or the environment that is
interacted with; for example, humans can easily distinguish
between wood and patterned laminate by touch, even though
the two materials may share a similar visual appearance.

Research on texture classification has been active for more
than two decades; a very early study by Mayol-Cuevas et
al. [1] classified textures using data obtained by sliding an
electret microphone on selected fine textures. More recent
attempts utilize sophisticated sensors such as the highly-
sensitive BioTac® or the high-resolution GelSight [2], and
modern deep learning methods such as convolutional and
recurrent neural networks [3], [4].

Most prior work has focused on one of the three texture
sensing modes of human touch perception: vibration only,
passive scanning, and static touch [5] (note that vibration
is a key feature used in the passive scanning literature). In
this work, we contribute to this fertile area of research by
exploring the effectiveness of hybridizing touch perceptual
modes. Two key research questions are investigated: do
we need prolonged dynamic contact with an object (e.g.,
a sliding motion) versus a simple spatially-static touch, to
accurately classify a texture? Potentially, both touch and
sliding reveal different properties of the object. If so, how

Authors Affiliation: 1A*STAR Institute for Infocomm Research, Singa-
pore. 2National University of Singapore, Singapore. 3Nanyang Technologi-
cal University, Singapore.

Email: e0348851@u.nus.edu, khuifang2202@gmail.com, wuy@i2r.a-
star.edu.sg, cai caixia@i2r.a-star.edu.sg, harold@comp.nus.edu.sg

much sliding data do we actually need, particularly in the
presence of noise (e.g., when lower-cost sensors are used or
the robot motion is not finely controlled)?

To answer these questions, we collected—and have made
publicly available—a tactile dataset obtained via the iCub
robot interacting with 23 different textures under loose
movement constraints. This is unlike other existing datasets
which were collected under strict force-controlled linear
movements [6], [7]. In addition, we include auxiliary data,
which includes encoder readings and iCub skin events (esti-
mated force, normal direction, and pressure).

Using this dataset, we tested a texture classification frame-
work (described in Sec. III) for utilizing features from
both spatially-static touch and sliding data. We contribute
three different machine learning (ML) models based on the
Support Vector Machine (SVM) that has been widely used
in the tactile perception community, and Long-Short-Term-
Memory (LSTM) cells and Convolutional Neural Networks
(CNNs) that are popular in the deep learning community. Our
systematic experiments in Sec. IV clearly show that using
both touch and sliding movements are important to accu-
rately determine textures — using both forms of tactile data
improved the classification accuracy of all three ML models
by as much as 10%. Moreover, only a short window of tactile
data is required to enable a highly accurate classification.

In summary, this paper makes three primary contributions:
• A research finding that texture classification accuracy is

improved with both sliding and touch movements;
• A texture classification framework with three different

ML models comprising statistical machine learning and
connectionist approaches;

• A tactile dataset using the iCub humanoid robot with
capacitive tactile sensor on 23 textures (a total of 2,852
samples comprising repeated measurements for both
touch and sliding movements).

Taking a broader perspective, this work makes clear that
multiple perceptual modes are important for texture iden-
tification; this warrants future work into combining multiple
forms of tactile data for other tasks, e.g., grasp stability
prediction and dexterous manipulation.

II. BACKGROUND AND RELATED WORK

Tactile learning is a vibrant field of research and prior
work includes tactile-based object classification [8]–[11],
grasp stability prediction and enhancement [12]–[14], dexter-
ous manipulation [14]–[16] and texture identification [17]–
[19]. Our work focuses on texture classification, which we
briefly review in this section.



To our knowledge, the first attempt at automated texture
classification was performed in the 1990s [1]; a human-
controlled electret microphone was slid across the surfaces
of 18 different materials to collect sound signals. These
signals were transformed into frequency features, and then
classified (with 94% accuracy) using Learning Vector Quan-
tization [20].

More recent work has explored autonomous texture clas-
sification by robots. For example, Jamali and Sammut [6]
conducted a comprehensive study of texture-classification
techniques. A robot finger (attached to a robot arm) with
a tactile array on the fingertip was slid over six different
textures with constant velocity and force. The collected
signals were analyzed in frequency spectrum and the five
frequencies with highest amplitudes are used for classifica-
tion. A larger study by Fishel and Loeb [7] demonstrated
texture classification of 117 materials with 95.4% accuracy
using the BioTac sensor, a highly sensitive multimodal tactile
sensor. The sensor was attached to a robotic arm with precise
control on force and traction, and a Bayesian classification
technique was used on three features: traction from motor
current, roughness, and fineness. A Bayesian approach was
also used in [19] to achieve a classification accuracy of
99% using BioTac sensor data collected from ten different
textures.

In contrast to the sliding-based approaches above,
Holscher et al. [21] showed that static features (e.g., tem-
perature and thermal flow) were more predictive of textures
compared to frequency features obtained using a BioTac
sensor. Unfortunately, prolonged acquisition times for certain
static features rendered the approach unsuitable for many
interaction tasks.

Recent developments in deep learning have prompted
their use in texture classification. For example, convolutional
neural networks (CNNs) were used in [18] to classify data
(6 different textures) from a tactile array sensor with 97.3%
accuracy. Very recent work has applied Deep Maximum Co-
variance Analysis (DMCA) and Long-Short-Term Memory
(LSTM) [3] on static touch tactile data gathered using the
GelSight [2], a highly-dense optical tactile sensor array.

In summary, the prior work above has shown that highly-
accurate texture identification from tactile data is possible
using a variety of machine learning techniques on different
tactile/touch sensors. However, the datasets used in the
sliding-based classification studies were typically gathered
under strict constraints, e.g., linear movements and force
control. Tactile data obtained “in the wild” will likely to be
from sensors with varying quality and under less controlled
circumstances, and as a result, more noisy.

In this work, we hypothesize that a combination of
spatially-static touch (vertical downward movement to con-
tact the object) and prolonged dynamic contact (sliding) is
more informative when data is noisy. Indeed, human beings
use a combination of multiple perceptual modes [5] — both
spatial patterns and scanning vibration — to perceive textures
[22]. In the following sections, we discuss our approach to
test this hypothesis and our findings.
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Fig. 1: An example of the raw tactile data generated by a
single taxel during a sliding motion. The activation threshold
was used to filter inactive taxels.

III. METHODOLOGY AND COMPARISON FRAMEWORK

To test our hypothesis, we developed and evaluated three
alternative machine learning (ML) methods, and compared
whether using either (i) touch or (ii) sliding data, or (iii)
a combination of both, attained the best performance on a
texture classification task. The compared methods comprise
both statistical and connectionist techniques, and were cho-
sen to be representative of approaches that have been applied
to texture prediction [4], [6], [18]; in particular, we use the
Support Vector Machine (SVM), Long-Short-Term Memory
network (LSTM) and Convolutional Neural Network (CNN).
Note however, that prior approaches have focused on either
touch or sliding data; our methods are able to utilize both.
In the following, we detail the touch/sliding features, and
methods developed in our study.

A. Raw Tactile Features

Each model was trained to predict one of C texture classes
using tactile data. There are two basic sets of raw tactile
features, i.e., those gathered during touch or sliding move-
ments. The raw tactile data obtained from each sensor/taxel
i is represented as a discrete time signal xi(t) (see Fig. 1).
Often, tactile sensors comprise multiple taxels and hence,
the raw data reading is a set of time-series X = {xi(t)}NT

i=1.
Depending on the model, the signals were either used in raw
form or pre-processed into features, and used to classify C
textures. The ground truth texture label for each sample i is
denoted yi.

B. SVM with Hand-Crafted Features

The Support Vector Machine (SVM) is a widely-used
supervised learning model that leverages on the kernel trick
to perform nonlinear classification [23]. In brief, the SVM
learns a representative subset of training points (“support
vectors”) that maximize the margin, i.e., the smallest distance
between any sample and the decision boundary induced by
the support vectors.

Our first model a multi-class SVM [24] with a standard
radial basis function (RBF) kernel. Since the raw tactile
features are temporal in nature and have varying lengths,
we hand-crafted (HC) fixed-length feature representations
similar to those used in prior work [7], [19]:
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Fig. 2: CNN-LSTM architecture. The tactile readings are used to form “tactile images” that are passed through convolutional
layers to obtain a learned intermediate feature representation. These features are fed into an LSTM network at each time
step and the last output of a sequence is taken as the texture prediction. Note that the same LSTM network is used in the
SVM-LSTM model.

• Touch-HC features capture the (approximate) slope of
activated taxels during touch movement. The change of
the i-th taxel for touching movement over time is

δi =
xi(ts)− xi(te)

T

where ts and te represent the start and end of the touch
[19]. We use the empirical mean and standard deviation
of δi across all the taxels as the touch features.

• Sliding-HC features comprise frequency-based and sta-
tistical features. More precisely, we compute the Fourier
transform of the raw tactile signal and obtain the
roughness, fineness, and frequency at maximum inten-
sity [7]. The statistical features are the average mean
µ = 1

z ∑
i=z
i=0 µi and standard deviation σ = 1

z ∑
i=z
i=0 σi

across all activated pixels, where µi and σi are mean
and standard deviation of readings from the i-th taxel
during the sliding phase.

Since a majority of taxels do not come into contact with the
object and remain inactive during a given motion, we first
filtered the taxels using an activation threshold; only taxels
with readings above the threshold for a period of 1s were
used to compute the features above (see Fig. 1).

C. SVM for Touch and LSTM for Sliding

Unlike touch motions that are relatively quick (≈1s),
sliding generally produces far longer sequences (≈7s in our
experiments) that may not be well-represented by the hand-
crafted features above. As such, our second model replaces

the SVM (using Sliding-HC features) with an LSTM network
[25], a popular neural-network model designed specifically
for time-series data.

Compared to the classic recurrent neural network (RNN),
the LSTM learns to control three internal structures (input,
output, and forget gates) that modulate what it remembers
and forgets. As such, LSTMs can operate over arbitrary time
intervals [26]. We used a two-layer LSTM network with 50
LSTM units in each layer. The network was trained to predict
the texture classes via a softmax layer from raw activated
taxel data. We combine both the SVM and LSTM into a
single SVM-LSTM model using a heuristic: the SVM is first
used to narrow down the potential classes by selecting the
top-k classes ordered by predictive posterior probability [27].
The winning class is the one with the highest LSTM output
score among the top-k classes (k = 6 in our experiments).

D. Representation Learning: CNN and LSTM

Our third model is representative of the modern deep-
learning approach, i.e., instead of using any hand-crafted
features, we learn feature representations in an end-to-end
manner via neural networks. We use the raw taxel data di-
rectly as “tactile images” and apply a CNN-LSTM network;
each tactile image is a m×n matrix where each element is
the tactile reading from a single taxel (in our experiments,
a tactile image was of size 6×10 and represented readings
from 60 taxels).

An overview of our network architecture is shown in Fig.
2. To elaborate, our CNN consists of one convolutional layer
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Fig. 3: Snapshots of the 23 materials used in this study: bath towel (BT), cardboard (CB), place sheet (PM), cork (CC), cotton
material (CH), cushion foam (FM), denim (CS), Ethylene-vinyl acetate sheet (ES), fake leather (LC), felt (FL), fiberboard
(FB), metal sheet (MS), remake sheet(RS), luncheon mat (LM), polypropylene picnic sheet (PS), polypropylene cutting
board (PT), bathroom mat (BM), carpet (CP), sponge (SS), styrofoam (SF), thin polypropylene wrapping paper (WP), hard
wood (WH), and yoga mat (YM).

Fig. 4: Experiment setup using the iCub robot. The material
is fixed on a non-deformable metal surface and taxels on the
iCub forearm are used to collect the tactile data.

(with convolutions of size 3× 5) and a max pooling layer
(2× 2). The resultant output activations are vectorized and
passed through Rectified Linear Units (ReLU) to derive a
18× 1 vector for each tactile image. The output of the
CNN is then fed to the LSTM (with the same architecture
described in III-C) as the sequence progresses. Unlike the
SVM-LSTM model, the CNN and LSTM layers operate
together and thus, the same structure was applied regardless
of the dataset (touch, slide or both). We take the output at
the end of the sequence as the class prediction.

E. Implementation, Training and Evaluation

All our methods were developed in Python; the SVM was
implemented using the scikit-learn library [28], whilst
the LSTM and CNN were developed using PyTorch [29].
SVM hyperparameters were selected using a grid search to
maximize the k-fold cross-validation accuracy scores on the
training set [30].

The LSTM and CNN were trained to minimize the multi-
class cross-entropy loss,

L =−∑
i

C

∑
c=1

I(c,yi) log(pi,c)

where yi is ground truth class for sample i, I(·, ·) is a binary
0-1 indicator function, and pi,c is predicted probability of
the class c for sample i (obtained from the softmax layer).
We use the Adam optimizer [31] for a maximum of 3000
epochs, with a batch size of 23 touch/sliding sequences. A
dropout of 0.8 was used in the neural-network models to
prevent overfitting.

For each of the aforementioned methods, we trained three
different variants: touch data only, sliding data only, and a
combination of both touch and sliding data. Note that for
the SVM-LSTM model, only the SVM was used to classify
touch data, and only the LSTM for sliding. We used accuracy
score as our primary comparison measure:

Accuracy =
1
N

N

∑
i
I(ŷi,yi) (1)

where ŷi and yi are the predicted and ground truth class labels
for sample i, respectively.

IV. ROBOT EXPERIMENT AND RESULTS

In this section, we detail our experiment using an iCub
humanoid robot. A wide range of 23 materials (Fig. 3)
were selected to better evaluate our key research questions.
We describe the iCub tactile sensor, the experimental setup,
materials tested, and our principal findings.

A. iCub Tactile Sensor
The iCub is an open source humanoid robot with tendon

based actuation and tactile skin on its parts. It contains 18
patches of tactile sensors on its hand, forearm, upper arm
and torso. A patch is made of triangular modules, and each
module consists of 10 taxels. Each taxel is a capacitive
sensor; the dielectric deforms when pressure is applied [32].
Note that the distances between taxels are unequal.

In this work, we used the 60 taxels on the iCub forearm,
which are distributed across a curved surface in a loose lattice
structure. We chose the forearm to gather sufficient tactile
data; the fingertips have far fewer sensors, and the palm does
not come into contact well with flat objects due to its concave
shape. In our experiment, approximately 20 taxels become
active during contact with materials.
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Fig. 5: Tactile sensor readings (red dots,left) during a sliding motion on the bathroom mat (BM) during three time points.
Different sets of taxels are activated during the motion, which can provide additional data about the underlying texture.
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Fig. 6: Boxplots comparing the three methods (SVM, SVM-LSTM, CNN-LSTM) trained on touch data, sliding data, and
a combination of both. The models trained with a combination of data perform significantly better relative to the models
trained solely on touch or sliding data. The CNN-LSTM achieves the best accuracy scores overall.

B. Experimental Setup

Our experimental setup is illustrated in Fig. 4; each
material was laid and secured on top of a non-deformable
metal surface. This ensured that the material remained fixed
when the forearm touched or slid across the material’s
surface. Instead of using linear movements via inverse kine-
matics, movements were performed by varying one degree-
of-freedom (DoF) in the iCub joint space. As the iCub is a
compliant robot, the movements were not precise and varied
between trials; we argue that the data collected in this manner
is more realistic and representative of tactile readings during
real interactions.

For touch movements, we varied the shoulder joint angle
to exert a static touch onto the material; the joint angle
was altered from 87◦ to 93◦ with angular velocity 1◦/s. For
sliding movements, the elbow joint angle changed from 90◦

to 30◦ with angular velocity 5◦/s; the forearm slides as the
elbow moves. Both backward and forward movements were
recorded. Fig. 5 illustrates the activated taxels on the forearm
during a sliding movement.

The touch and sliding movements were conducted inde-
pendently due to technical limitations; the touch movements
sometimes caused tendons to snap, which interrupted the
experiment. Because the touch and sliding data do not come
from the same action movement, the statistical dependency
between the two stages is weaker. We posit that models
trained under this circumstance should perform equally well
(or better) for data collected during a single touch-slide
motion. For both movements, data was collected for a single

TABLE I: Accuracy scores for the three ML models trained
with Touch, Sliding, and a Combination of Touch and Sliding
data. Standard deviations are shown in brackets.

Method Touch Sliding Combination
SVM 0.61 (0.028) 0.77 (0.019) 0.88 (0.037)
SVM-LSTM 0.61 (0.028) 0.86 (0.035) 0.96 (0.028)
CNN-LSTM 0.85 (0.054) 0.86 (0.038) 0.98 (0.022)

material before moving on to the next. Tactile sensors were
calibrated before each procedure using SkinManager [33]
and the readings were recorded at 50 Hz.

In total, we performed 62 touch movements and 62 sliding
movements (31 forwards and 31 backwards) per material. As
such, dataset comprises 2,852 samples where each sample is
a sequence of tactile sensor readings, encoder values, and
force estimates obtained from iCub’s torque sensor.

C. Results

Fig. 6 and Tbl. I summarize the results obtained by apply-
ing each of the ML models to the final dataset; each model
was repeated 10 times on random train-test (80-20) splits. For
all three models, the models that use a combination of touch
and sliding data achieve the best scores. In fact, the accuracy
difference is ≈ 10%, which is significant performance gain
when using both types of data. These results suggest that
different texture properties are obtained during touch and
sliding.

Comparing the different approaches, we see that CNN-
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LSTM model performs the best overall, particularly when
trained/tested using only touch data. This finding echoes
other recent work (e.g., in computer vision [34], [35]) that
learned representations are able to dramatically outperform
hand-engineered features. Interestingly, the CNN works well
even though the tactile images are generated from taxels that
are not spatially uniform. It appears that sufficient structure
was present for the model to derive good intermediate feature
representations.

Fig. 7 shows the performance of the SVM-LSTM and
CNN-LSTM over time. Both models are comparable, with
the CNN-LSTM achieving the higher result by the end of
the sliding motion. Interestingly, we see the SVM-LSTM
achieves marginally higher scores in the beginning; future
work could explore why exactly this occurred. Nevertheless,
both models achieve peak accuracy early in the sequence
(≈ 1.5s), suggesting that short sliding motions are sufficient
for accurate texture identification.

The “sliding only” line shows the CNN-LSTM model
trained and tested only using sliding data; without the infor-
mation provided by touch, the model is unable to achieve the
performance of the other two models. Again, this suggests
that important distinguishing information is sensed by the
touch motion that is different from that obtained via sliding.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated that accurate and robust
texture classification for variety of materials is feasible using
our proposed hybrid mode of touch and sliding movements.
This suggests that tactile data gathered during each of the
movements reveals different underlying textural properties.

Within our comparison framework, three models were
developed and compared from a performance standpoint; the
connectionist model that uses both the CNN and LSTM
achieved a high accuracy of 98% on our dataset of 23
textures. Further analysis revealed that only a short sliding
motion was required to isolate the correct texture class.
We have made our tactile dataset (comprising tactile sen-
sor readings, encoder data, and force estimates) publicly

available online at https://github.com/crslab/
TactileLearning.

Moving forward, we posit that other tasks may also
benefit from a hybridization of tactile modes, e.g., object
identification and grasp stability prediction. Future work may
also examine alternative sensors and models for accurate
texture identification; although the CNN-LSTM achieved
excellent scores, we believe further improvement is possible
and future developments would bring robots closer to (or
surpass) human-level performance.
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