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Can robots use tools (and other grasped objects) to
extend theilr perception
via vibro-tactile sensing and learning?
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Models and Feature Types

Models Features

» Support Vector Machine » Spike Counts
(Linear kernel) » Fast Fourier Transform (FFT)

* Support Vector Machine . Autoencoder

(RBF kernel)
* Multilayer Perceptron

* Recurrent Neural
Network + Multilayer
Perceptron

* Event Spike Tensor
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Experiment Objectives

Can the robot localize contacts?
How fast do we need to sample?
Do we need multiple taxels?

Can we identify stable grasps during robot-
human handover?

Can we identify foods using a regular fork?
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Sensory Extension Tasks
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Sensory Extension Tasks
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Tap Localization
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20cm 30cm 50cm
"""" BioTAC (PAC) |  NUSkin | BioTAC(PAC) | NUSkin | BioTAC (PAC) |  NUSkin
| Baseline | 25492+0.1873 | 1.7102 +0.0913 | 3.8219 + 0.2584 | 3.2682 + 0.1861 | 6.3491 + 0.5526 | 4.2323 + 0.4525
o FFT | 22397 +0.0821 | 1.3864 +0.0448 | 3.4202 + 0.2153 | 2.7135+0.1811 | 6.5452 + 0.3566 | 3.8361 +0.5234
SYRLINGAr | Ltoencoder | 2.6015+ 02132 | 2.1976 + 01058 | 4.3844 +0.1394 | 4.0754 + 0.3331 | 7.4146 + 0.4647 | 6.0886 + 0.4546
""""""""" Kermnel | | 15260+01176 |  |2.7310+0.0862| | 3.8520+0.4105
| Baseline | 2.0729+0.1506 | 15411+ 0.1029 | 3.0808 + 0.1454 |2.8592 + 0.1871 | 5.2913 + 0.4026 | 3.5130 + 0.4029
""""""""""" FFT | 1.9021+0.0516 | 1.2053 +0.0376 | 2.7636 + 0.0370 | 2.3250 + 0.1395 | 6.2178 + 0.3066 | 3.4561 + 0.4067
SYRRBE 1 Utoencoder | 2.3188+0.1957 | 18579+ 0.1395 | 35110 4 0.2027 | 3.9692 + 0.3306 | 6.5044 + 0.4685 | 4.7812 + 0.3819
""""""""" Kemel | | 14472+01209 | | 2.6060+0.1661| | 3.4290 +0.3368
| Baseline | 2.3579+0.2896 | 1.9006+0.1239 | 3.8654 + 0.5083 | 2.9053 + 0.1040 | 5.1097 + 0.5556 | 3.8222 + 0.5322
""""""""""" FFT | 1.7079 +0.0278 | 1.6415+0.3577 | 2.7636 + 0.0370 | 2.3250 + 0.1395 | 5.2028 + 0.6282 | 4.1149 + 0.6749
MEP 1 Autoencoder | 2.4047+0.2135 | 2.0130+0.1565 | 4.2544 + 0.3960 | 4.1346 + 0.3691 | 65187 + 0.5216 | 5.5296 + 0.6103
""""""""" Kemel | | 13964+01488 | | 20273+0.1546| | 3.4227+0.3272
RN+ MLp | Baseline | 2277304501 | 09283+ 0.2015 | 47522 £1.1578 | 12339 £ 01775 | 47450 £ 0.8914 | 32020 12359
Kernel 1.3320 + 0.2319 1.7354 + 0.2097 3.0750 = 0.4830
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Can the robot localize contacts?
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How fast do we need to sample?
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How fast do we need to sample?

~ 2-3 KHzZ

NUSKIN
—— 20 cm
30 cm
—— 50 cm
:
[
[
)
\\-’_I“.
] )
)
| | | | il
2 4 6 8 10

Frequency (/og>)

10 -

16

BioTac PAC

-4-- 20 cm

S~ 30 cm
~‘#\+ -4-- 50 cm
ekl

I"‘h
H"'h
oy

hhh
——
—
S
ﬁ“‘

Frequency (/og;)

B8 &

NUS

aaaaaa | Universit
f Singap



==

NLIN&

Do multiple spatially-distributed taxels help?
Yes.

B NUSKin (2F)
NUSKin (1F)
W BioTac (PAC)
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Do multiple spatially-distributed taxels help?
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Sensory Extension Tasks

Tap Localization
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Grasp Stability
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- Grasp Stability Prediction during
Robot-Human Handover

up to 80%
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Can we predict grasp stability?
Yes.
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Sensory Extension Tasks

Grasp Stability
Bl |

NUSKin
Optitrack
Markers 3 TS

,;/ 5 =
Ny

-

" »

C' Optitrack
M“?ke[s

%

Biolac

a—
-

25



NUS

National University
of Singapore

NLIN&

==

Sensory Extension Tasks

Food Identification
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Can we classify different food types?

NUSKin YES.  gioTac PAC
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Summary of Findings

Can the robot localize contacts? Yes, lowest errors ~1.0cm

How fast do we need to sample? 2-3 kKHz

Yes, using all 80 taxels led to

Do we need multiple taxels? |
higher accuracy

Can we identify stable grasps during robot- Yes, 60-80% accuracy
human handover?

Can we identify foods using a regular fork? Yes, 90% accuracy
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Abstract—Humans display the remarkable ability to sense the
world through tools and other held objects. For example, we
are able to pinpoint impact locations on a held rod and tell
apart different textures using a rigid probe, In this work, we
consider how we can enable robots to have a similar capacity, i.e.,
to embody tools and extend perception using standard grasped
objects. We propose that vibro-tactile sensing using dynamic
tactile sensors on the robot fingers, along with machine learning
models, enables robots to decipher contact information that is
transmitted as vibrations along rigid objects. This paper reports
on extensive experiments using the BioTac micro-vibration sensor
and a new event dynamic sensor, the NUSkin, capable of multi-
taxel sensing at 4 kHz. We demonstrate that fine localization
on a held rod is possible using our approach (with errors less
than 1 cm on a 20 em rod). Next, we show that vibro-tactile
ion can lead to grasp stability predi
during object handover, and accurate food identification using
a standard fork. We find that multi-taxel vibro-tactile sensing
at sufficiently high sampling rate (above 2 kHz) led to the hest
performance across the various tasks and objects. Taken together,
our results provides both evidence and guidelines for using vibro-
tactile perception to extend tactile perception, which we believe
will lead to enhanced competency with tools and better physical
human-robat-interaction.

I INTRODUCTION

Our proficiency with our hands is crucially supported by
our sense of touch. Mechanoreceptors in our skin enable us to
finely perceive tactile information, which is invaluable when
directly manipulating objects and when using tools. Indeed,
humans can accurately localize contact not only on our skin,
but also on grasped objects [I], and are able to discriminate
textures through rigid links [2). Unlike a majority of tactile
perception, which has focussed on determining properties of
grasped objects, we are inspired by our remarkable ability to
sense the world through tools and other held items.

In this work, we seek to extend robot tactile perception by
using standard objects (e.g., a stick or a fork) and without the
use of mounted accelerometers. Prior work has demonstrated
that contact events — whether/when a contact occurred on a
held object — can be reliably detected with existing sensors
For example, tactile signals have been used to trigger motions
during human-robot handover [3] and to detect when a held
soda-can has been placed on a table [4]. Here, we go beyond
existing rescarch and ask: can we decipher the properties of

&M

Faaturs Extraction

Fig. 1: We study Extended Tactile Perception — our goal is to enable
robots to extend their tactile perception through standard objects such
as tools. (A) We show that robots are able to accurately localize
taps on an acrylic rod using fast vibro-tactile sensing and machine
learning. Vibrations caused by the tap travel up the rod where they
are picked up by a dynamic tactile sensor (the NUSkin in this image).
The signal is captured and mapped into a tap position using simple
models and learned features. We provide results on two additional
tasks: (B) grasp stability classification during object handover and
(C) food classification through a fork.

such contacts? Where on a held tool’s surface did the contact
occur? What type of object did the tool make contact with?

Addressing this challenge is important for enabling compe-
tency with tools — sensing via tools can help robots determine
the properties of objects that are out of reach, or that are too
difficult or dangerous to interact with directly. In humans, recent
evidence suggests vibration sensing via fast-adapting (FA)
somatic sensory receptors and neural processing of “vibratory
motifs” underlies our capacity to embody tools and extend
perception beyond our body [1]. Likewise, we hypothesize that
extended tactile perception (beyond the boundary of the rabot)
may be achieved using a combination of high-frequency vibro-
tactile sensing via antificial skin on the robot and processing
via st I learning or neural models (Fig. [I).

A key feature of our work is that we only use compact
tactile sensors on the robot gripper, rather than specially-
crafted sensorized tools (e.g., [3, 6, 7). We propose a system

Paper ID: #1188
https://arxiv.org/abs/2106.00489

https://github.com/clear- tasbolat@comp.nus.edu.sg
nus/ext-sense harold@comp.nus.edu.sqg

33



mailto:tasbolat@comp.nus.edu.sg
mailto:harold@comp.nus.edu.sg
https://arxiv.org/abs/2106.00489

